Log InRegister
Quick Links : The Mindat ManualThe Rock H. Currier Digital LibraryMindat Newsletter [Free Download]
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat ArticlesThe ElementsThe Rock H. Currier Digital LibraryGeologic Time
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
Mining CompaniesStatisticsUsersMineral MuseumsClubs & OrganizationsMineral Shows & EventsThe Mindat DirectoryDevice SettingsThe Mineral Quiz
Photo SearchPhoto GalleriesSearch by ColorNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day GalleryPhotography

Panj-Kuh iron deposit (Panj-Kuh iron mine), Damghan County, Semnan Province, Irani
Regional Level Types
Panj-Kuh iron deposit (Panj-Kuh iron mine)Deposit
Damghan CountyCounty
Semnan ProvinceProvince
IranCountry

This page is currently not sponsored. Click here to sponsor this page.
PhotosMapsSearch
Latitude & Longitude (WGS84):
35° 28' 19'' North , 54° 12' 0'' East
Latitude & Longitude (decimal):
Type:
KΓΆppen climate type:


The Panj-Kuh iron deposit is located 50 km southeast of Damghan within the Central Iranian Zone (CIZ).

The Panj-Kuh deposit is hosted mainly in the Eocene andesite and basalt volcano-pyroclastic rocks as well as Oligocene syenite, monzonite and gabbro plutonic rocks. The mineralisation of the Panj-Kuh iron deposit occurred in both orthomagmatic and hydrothermal stages. In the orthomagmatic stage, associated with crystallisation of a gabbroic magma, iron mineralisation occurred in the form of disseminated and massive ores. In the second stage, the monzonitic intrusion was injected into the gabbroic, volcano-sedimentary and volcanic rocks and caused hydrothermal iron mineralisation such as skarnisation. Pyroxene, epidote and amphibole are the main silicate minerals; magnetite and less hematite are the principal ore mineral, pyrite, chalcopyrite, marcasite, galena, sphalerite, chalcocite, and covellite are minor ore constituents (Sheibi, 2014; Nabatian et al., 2015; Sheibi et al., 2016).

The Panj-Kuh Fe oxide deposit is estimated to contain 100 million tons of iron ore with an average Fe2O3 = 84.2%, and FeO = 8.5%. The deposit tends to be zoned vertically from magnetite dominant at depth to hematite-dominantat upper levels. The ore body occurs within volcanic rocks that were brecciated during fault movement along bounding shear zones. Mineralisation occurs dominantly as disseminations, veins, and breccia infill.

Select Mineral List Type

Standard Detailed Gallery Strunz Chemical Elements

Mineral List


25 valid minerals.

Rock Types Recorded

Note: data is currently VERY limited. Please bear with us while we work towards adding this information!

Select Rock List Type

Alphabetical List Tree Diagram

Detailed Mineral List:

β“˜ Actinolite
Formula: ◻Ca2(Mg4.5-2.5Fe0.5-2.5)Si8O22(OH)2
Reference: Sheibi, M. (2014) Mineral chemistry and mass changes of elements during alteration of Panj-Kuh intrusive body (Damghan, Iran). Geopersia, 4, 1, 87-102; Sheibi, M., Mirnejad, H., and Pooralizadeh Moghaddam, M. (2016) Magnetic susceptibility anisotropy as a predictive exploration tool of metasomatic iron oxide deposits: Example from the Panj-Kuh iron ore body, NE Iran. Ore Geology Reviews, 72, 1, 612-628.
β“˜ Albite
Formula: Na(AlSi3O8)
Reference: Sheibi, M. (2014) Mineral chemistry and mass changes of elements during alteration of Panj-Kuh intrusive body (Damghan, Iran). Geopersia, 4, 1, 87-102; Sheibi, M., Mirnejad, H., and Pooralizadeh Moghaddam, M. (2016) Magnetic susceptibility anisotropy as a predictive exploration tool of metasomatic iron oxide deposits: Example from the Panj-Kuh iron ore body, NE Iran. Ore Geology Reviews, 72, 1, 612-628.
β“˜ 'Amphibole Supergroup'
Formula: AB2C5((Si,Al,Ti)8O22)(OH,F,Cl,O)2
Reference: Nabatian, G., Rastad, E., Neubauer, F., Honarmand, M., and Ghaderi, M. (2015) Fe and Fe-Mn mineralization in Iran: Implication from Tethyan Metallogeny. Australian Journal of Earth Sciences, 62, 211-241.
β“˜ Analcime
Formula: Na(AlSi2O6) · H2O
Reference: Sheibi, M. (2014) Mineral chemistry and mass changes of elements during alteration of Panj-Kuh intrusive body (Damghan, Iran). Geopersia, 4, 1, 87-102; Sheibi, M., Mirnejad, H., and Pooralizadeh Moghaddam, M. (2016) Magnetic susceptibility anisotropy as a predictive exploration tool of metasomatic iron oxide deposits: Example from the Panj-Kuh iron ore body, NE Iran. Ore Geology Reviews, 72, 1, 612-628.
β“˜ Azurite
Formula: Cu3(CO3)2(OH)2
Reference: Sheibi, M. (2014) Mineral chemistry and mass changes of elements during alteration of Panj-Kuh intrusive body (Damghan, Iran). Geopersia, 4, 1, 87-102; Nabatian, G., Rastad, E., Neubauer, F., Honarmand, M., and Ghaderi, M. (2015) Fe and Fe-Mn mineralization in Iran: Implication from Tethyan Metallogeny. Australian Journal of Earth Sciences, 62, 211-241.
β“˜ 'Biotite'
Formula: K(Fe2+/Mg)2(Al/Fe3+/Mg/Ti)([Si/Al/Fe]2Si2O10)(OH/F)2 or Simplified: K(Mg,Fe)3AlSi3O10(OH)2
Reference: Sheibi, M. (2014) Mineral chemistry and mass changes of elements during alteration of Panj-Kuh intrusive body (Damghan, Iran). Geopersia, 4, 1, 87-102; Sheibi, M., Mirnejad, H., and Pooralizadeh Moghaddam, M. (2016) Magnetic susceptibility anisotropy as a predictive exploration tool of metasomatic iron oxide deposits: Example from the Panj-Kuh iron ore body, NE Iran. Ore Geology Reviews, 72, 1, 612-628.
β“˜ Calcite
Formula: CaCO3
Reference: Sheibi, M. (2014) Mineral chemistry and mass changes of elements during alteration of Panj-Kuh intrusive body (Damghan, Iran). Geopersia, 4, 1, 87-102; Sheibi, M., Mirnejad, H., and Pooralizadeh Moghaddam, M. (2016) Magnetic susceptibility anisotropy as a predictive exploration tool of metasomatic iron oxide deposits: Example from the Panj-Kuh iron ore body, NE Iran. Ore Geology Reviews, 72, 1, 612-628.
β“˜ Chalcocite
Formula: Cu2S
Reference: Sheibi, M., Mirnejad, H., and Pooralizadeh Moghaddam, M. (2016) Magnetic susceptibility anisotropy as a predictive exploration tool of metasomatic iron oxide deposits: Example from the Panj-Kuh iron ore body, NE Iran. Ore Geology Reviews, 72, 1, 612-628.
β“˜ Chalcopyrite
Formula: CuFeS2
Reference: Sheibi, M. (2014) Mineral chemistry and mass changes of elements during alteration of Panj-Kuh intrusive body (Damghan, Iran). Geopersia, 4, 1, 87-102; Nabatian, G., Rastad, E., Neubauer, F., Honarmand, M., and Ghaderi, M. (2015) Fe and Fe-Mn mineralization in Iran: Implication from Tethyan Metallogeny. Australian Journal of Earth Sciences, 62, 211-241; Sheibi, M., Mirnejad, H., and Pooralizadeh Moghaddam, M. (2016) Magnetic susceptibility anisotropy as a predictive exploration tool of metasomatic iron oxide deposits: Example from the Panj-Kuh iron ore body, NE Iran. Ore Geology Reviews, 72, 1, 612-628.
β“˜ 'Chlorite Group'
Reference: Sheibi, M. (2014) Mineral chemistry and mass changes of elements during alteration of Panj-Kuh intrusive body (Damghan, Iran). Geopersia, 4, 1, 87-102; Sheibi, M., Mirnejad, H., and Pooralizadeh Moghaddam, M. (2016) Magnetic susceptibility anisotropy as a predictive exploration tool of metasomatic iron oxide deposits: Example from the Panj-Kuh iron ore body, NE Iran. Ore Geology Reviews, 72, 1, 612-628.
β“˜ 'Clinopyroxene Subgroup'
Description: Diopside-hedenbergite series (Sheibi, 2014)
Reference: Sheibi, M. (2014) Mineral chemistry and mass changes of elements during alteration of Panj-Kuh intrusive body (Damghan, Iran). Geopersia, 4, 1, 87-102; Nabatian, G., Rastad, E., Neubauer, F., Honarmand, M., and Ghaderi, M. (2015) Fe and Fe-Mn mineralization in Iran: Implication from Tethyan Metallogeny. Australian Journal of Earth Sciences, 62, 211-241; Sheibi, M., Mirnejad, H., and Pooralizadeh Moghaddam, M. (2016) Magnetic susceptibility anisotropy as a predictive exploration tool of metasomatic iron oxide deposits: Example from the Panj-Kuh iron ore body, NE Iran. Ore Geology Reviews, 72, 1, 612-628.
β“˜ Covellite
Formula: CuS
Reference: Sheibi, M., Mirnejad, H., and Pooralizadeh Moghaddam, M. (2016) Magnetic susceptibility anisotropy as a predictive exploration tool of metasomatic iron oxide deposits: Example from the Panj-Kuh iron ore body, NE Iran. Ore Geology Reviews, 72, 1, 612-628.
β“˜ Diopside
Formula: CaMgSi2O6
Reference: Sheibi, M. (2014) Mineral chemistry and mass changes of elements during alteration of Panj-Kuh intrusive body (Damghan, Iran). Geopersia, 4, 1, 87-102.
β“˜ Epidote
Formula: (CaCa)(AlAlFe3+)O[Si2O7][SiO4](OH)
Reference: Sheibi, M. (2014) Mineral chemistry and mass changes of elements during alteration of Panj-Kuh intrusive body (Damghan, Iran). Geopersia, 4, 1, 87-102; Nabatian, G., Rastad, E., Neubauer, F., Honarmand, M., and Ghaderi, M. (2015) Fe and Fe-Mn mineralization in Iran: Implication from Tethyan Metallogeny. Australian Journal of Earth Sciences, 62, 211-241.
β“˜ Ferro-actinolite
Formula: ◻Ca2Fe2+5(Si8O22)OH2
Reference: Sheibi, M., Mirnejad, H., and Pooralizadeh Moghaddam, M. (2016) Magnetic susceptibility anisotropy as a predictive exploration tool of metasomatic iron oxide deposits: Example from the Panj-Kuh iron ore body, NE Iran. Ore Geology Reviews, 72, 1, 612-628.
β“˜ Fluorapatite
Formula: Ca5(PO4)3F
Reference: Sheibi, M. (2014) Mineral chemistry and mass changes of elements during alteration of Panj-Kuh intrusive body (Damghan, Iran). Geopersia, 4, 1, 87-102; Sheibi, M., Mirnejad, H., and Pooralizadeh Moghaddam, M. (2016) Magnetic susceptibility anisotropy as a predictive exploration tool of metasomatic iron oxide deposits: Example from the Panj-Kuh iron ore body, NE Iran. Ore Geology Reviews, 72, 1, 612-628.
β“˜ Galena
Formula: PbS
Reference: Sheibi, M., Mirnejad, H., and Pooralizadeh Moghaddam, M. (2016) Magnetic susceptibility anisotropy as a predictive exploration tool of metasomatic iron oxide deposits: Example from the Panj-Kuh iron ore body, NE Iran. Ore Geology Reviews, 72, 1, 612-628.
β“˜ Hematite
Formula: Fe2O3
Reference: Sheibi, M. (2014) Mineral chemistry and mass changes of elements during alteration of Panj-Kuh intrusive body (Damghan, Iran). Geopersia, 4, 1, 87-102; Sheibi, M., Mirnejad, H., and Pooralizadeh Moghaddam, M. (2016) Magnetic susceptibility anisotropy as a predictive exploration tool of metasomatic iron oxide deposits: Example from the Panj-Kuh iron ore body, NE Iran. Ore Geology Reviews, 72, 1, 612-628.
β“˜ Ilmenite
Formula: Fe2+TiO3
Reference: Sheibi, M., Mirnejad, H., and Pooralizadeh Moghaddam, M. (2016) Magnetic susceptibility anisotropy as a predictive exploration tool of metasomatic iron oxide deposits: Example from the Panj-Kuh iron ore body, NE Iran. Ore Geology Reviews, 72, 1, 612-628.
β“˜ 'K Feldspar'
Formula: KAlSi3O8
Reference: Sheibi, M. (2014) Mineral chemistry and mass changes of elements during alteration of Panj-Kuh intrusive body (Damghan, Iran). Geopersia, 4, 1, 87-102; Sheibi, M., Mirnejad, H., and Pooralizadeh Moghaddam, M. (2016) Magnetic susceptibility anisotropy as a predictive exploration tool of metasomatic iron oxide deposits: Example from the Panj-Kuh iron ore body, NE Iran. Ore Geology Reviews, 72, 1, 612-628.
β“˜ Magnetite
Formula: Fe2+Fe3+2O4
Reference: Sheibi, M. (2014) Mineral chemistry and mass changes of elements during alteration of Panj-Kuh intrusive body (Damghan, Iran). Geopersia, 4, 1, 87-102; Nabatian, G., Rastad, E., Neubauer, F., Honarmand, M., and Ghaderi, M. (2015) Fe and Fe-Mn mineralization in Iran: Implication from Tethyan Metallogeny. Australian Journal of Earth Sciences, 62, 211-241; Sheibi, M., Mirnejad, H., and Pooralizadeh Moghaddam, M. (2016) Magnetic susceptibility anisotropy as a predictive exploration tool of metasomatic iron oxide deposits: Example from the Panj-Kuh iron ore body, NE Iran. Ore Geology Reviews, 72, 1, 612-628.
β“˜ Malachite
Formula: Cu2(CO3)(OH)2
Reference: Sheibi, M. (2014) Mineral chemistry and mass changes of elements during alteration of Panj-Kuh intrusive body (Damghan, Iran). Geopersia, 4, 1, 87-102; Nabatian, G., Rastad, E., Neubauer, F., Honarmand, M., and Ghaderi, M. (2015) Fe and Fe-Mn mineralization in Iran: Implication from Tethyan Metallogeny. Australian Journal of Earth Sciences, 62, 211-241.
β“˜ Marcasite
Formula: FeS2
Reference: Sheibi, M., Mirnejad, H., and Pooralizadeh Moghaddam, M. (2016) Magnetic susceptibility anisotropy as a predictive exploration tool of metasomatic iron oxide deposits: Example from the Panj-Kuh iron ore body, NE Iran. Ore Geology Reviews, 72, 1, 612-628.
β“˜ Marialite
Formula: Na4Al3Si9O24Cl
Reference: Sheibi, M. (2014) Mineral chemistry and mass changes of elements during alteration of Panj-Kuh intrusive body (Damghan, Iran). Geopersia, 4, 1, 87-102; Sheibi, M., Mirnejad, H., and Pooralizadeh Moghaddam, M. (2016) Magnetic susceptibility anisotropy as a predictive exploration tool of metasomatic iron oxide deposits: Example from the Panj-Kuh iron ore body, NE Iran. Ore Geology Reviews, 72, 1, 612-628.
β“˜ Pyrite
Formula: FeS2
Reference: Sheibi, M. (2014) Mineral chemistry and mass changes of elements during alteration of Panj-Kuh intrusive body (Damghan, Iran). Geopersia, 4, 1, 87-102; Nabatian, G., Rastad, E., Neubauer, F., Honarmand, M., and Ghaderi, M. (2015) Fe and Fe-Mn mineralization in Iran: Implication from Tethyan Metallogeny. Australian Journal of Earth Sciences, 62, 211-241; Sheibi, M., Mirnejad, H., and Pooralizadeh Moghaddam, M. (2016) Magnetic susceptibility anisotropy as a predictive exploration tool of metasomatic iron oxide deposits: Example from the Panj-Kuh iron ore body, NE Iran. Ore Geology Reviews, 72, 1, 612-628.
β“˜ Quartz
Formula: SiO2
Reference: Sheibi, M. (2014) Mineral chemistry and mass changes of elements during alteration of Panj-Kuh intrusive body (Damghan, Iran). Geopersia, 4, 1, 87-102; Sheibi, M., Mirnejad, H., and Pooralizadeh Moghaddam, M. (2016) Magnetic susceptibility anisotropy as a predictive exploration tool of metasomatic iron oxide deposits: Example from the Panj-Kuh iron ore body, NE Iran. Ore Geology Reviews, 72, 1, 612-628.
β“˜ Rutile
Formula: TiO2
Reference: Sheibi, M. (2014) Mineral chemistry and mass changes of elements during alteration of Panj-Kuh intrusive body (Damghan, Iran). Geopersia, 4, 1, 87-102.
β“˜ Sphalerite
Formula: ZnS
Reference: Sheibi, M., Mirnejad, H., and Pooralizadeh Moghaddam, M. (2016) Magnetic susceptibility anisotropy as a predictive exploration tool of metasomatic iron oxide deposits: Example from the Panj-Kuh iron ore body, NE Iran. Ore Geology Reviews, 72, 1, 612-628.
β“˜ Titanite
Formula: CaTi(SiO4)O
Reference: Sheibi, M. (2014) Mineral chemistry and mass changes of elements during alteration of Panj-Kuh intrusive body (Damghan, Iran). Geopersia, 4, 1, 87-102; Sheibi, M., Mirnejad, H., and Pooralizadeh Moghaddam, M. (2016) Magnetic susceptibility anisotropy as a predictive exploration tool of metasomatic iron oxide deposits: Example from the Panj-Kuh iron ore body, NE Iran. Ore Geology Reviews, 72, 1, 612-628.
β“˜ Tremolite
Formula: ◻Ca2Mg5(Si8O22)(OH)2
Reference: Sheibi, M. (2014) Mineral chemistry and mass changes of elements during alteration of Panj-Kuh intrusive body (Damghan, Iran). Geopersia, 4, 1, 87-102.

Gallery:

List of minerals arranged by Strunz 10th Edition classification

Group 2 - Sulphides and Sulfosalts
β“˜Chalcocite2.BA.05Cu2S
β“˜Chalcopyrite2.CB.10aCuFeS2
β“˜Covellite2.CA.05aCuS
β“˜Galena2.CD.10PbS
β“˜Marcasite2.EB.10aFeS2
β“˜Pyrite2.EB.05aFeS2
β“˜Sphalerite2.CB.05aZnS
Group 4 - Oxides and Hydroxides
β“˜Hematite4.CB.05Fe2O3
β“˜Ilmenite4.CB.05Fe2+TiO3
β“˜Magnetite4.BB.05Fe2+Fe3+2O4
β“˜Quartz4.DA.05SiO2
β“˜Rutile4.DB.05TiO2
Group 5 - Nitrates and Carbonates
β“˜Azurite5.BA.05Cu3(CO3)2(OH)2
β“˜Calcite5.AB.05CaCO3
β“˜Malachite5.BA.10Cu2(CO3)(OH)2
Group 8 - Phosphates, Arsenates and Vanadates
β“˜Fluorapatite8.BN.05Ca5(PO4)3F
Group 9 - Silicates
β“˜Actinolite9.DE.10β—»Ca2(Mg4.5-2.5Fe0.5-2.5)Si8O22(OH)2
β“˜Albite9.FA.35Na(AlSi3O8)
β“˜Analcime9.GB.05Na(AlSi2O6) Β· H2O
β“˜Diopside9.DA.15CaMgSi2O6
β“˜Epidote9.BG.05a(CaCa)(AlAlFe3+)O[Si2O7][SiO4](OH)
β“˜Ferro-actinolite9.DE.10β—»Ca2Fe2+5(Si8O22)OH2
β“˜Marialite9.FB.15Na4Al3Si9O24Cl
β“˜Titanite9.AG.15CaTi(SiO4)O
β“˜Tremolite9.DE.10β—»Ca2Mg5(Si8O22)(OH)2
Unclassified Minerals, Rocks, etc.
β“˜'Amphibole Supergroup'-AB2C5((Si,Al,Ti)8O22)(OH,F,Cl,O)2
β“˜'Biotite'-K(Fe2+/Mg)2(Al/Fe3+/Mg/Ti)([Si/Al/Fe]2Si2O10)(OH/F)2 or Simplified: K(Mg,Fe)3AlSi3O10(OH)2
β“˜'Chlorite Group'-
β“˜'Clinopyroxene Subgroup'-
β“˜'K Feldspar'-KAlSi3O8

List of minerals for each chemical element

HHydrogen
Hβ“˜ Epidote(CaCa)(AlAlFe3+)O[Si2O7][SiO4](OH)
Hβ“˜ Amphibole SupergroupAB2C5((Si,Al,Ti)8O22)(OH,F,Cl,O)2
Hβ“˜ MalachiteCu2(CO3)(OH)2
Hβ“˜ AzuriteCu3(CO3)2(OH)2
Hβ“˜ Actinolite◻Ca2(Mg4.5-2.5Fe0.5-2.5)Si8O22(OH)2
Hβ“˜ Ferro-actinolite◻Ca2Fe52+(Si8O22)OH2
Hβ“˜ BiotiteK(Fe2+/Mg)2(Al/Fe3+/Mg/Ti)([Si/Al/Fe]2Si2O10)(OH/F)2 or Simplified: K(Mg,Fe)3AlSi3O10(OH)2
Hβ“˜ AnalcimeNa(AlSi2O6) · H2O
Hβ“˜ Tremolite◻Ca2Mg5(Si8O22)(OH)2
CCarbon
Cβ“˜ MalachiteCu2(CO3)(OH)2
Cβ“˜ AzuriteCu3(CO3)2(OH)2
Cβ“˜ CalciteCaCO3
OOxygen
Oβ“˜ Epidote(CaCa)(AlAlFe3+)O[Si2O7][SiO4](OH)
Oβ“˜ Amphibole SupergroupAB2C5((Si,Al,Ti)8O22)(OH,F,Cl,O)2
Oβ“˜ MagnetiteFe2+Fe23+O4
Oβ“˜ MalachiteCu2(CO3)(OH)2
Oβ“˜ AzuriteCu3(CO3)2(OH)2
Oβ“˜ AlbiteNa(AlSi3O8)
Oβ“˜ HematiteFe2O3
Oβ“˜ Actinolite◻Ca2(Mg4.5-2.5Fe0.5-2.5)Si8O22(OH)2
Oβ“˜ CalciteCaCO3
Oβ“˜ QuartzSiO2
Oβ“˜ Ferro-actinolite◻Ca2Fe52+(Si8O22)OH2
Oβ“˜ BiotiteK(Fe2+/Mg)2(Al/Fe3+/Mg/Ti)([Si/Al/Fe]2Si2O10)(OH/F)2 or Simplified: K(Mg,Fe)3AlSi3O10(OH)2
Oβ“˜ TitaniteCaTi(SiO4)O
Oβ“˜ K FeldsparKAlSi3O8
Oβ“˜ IlmeniteFe2+TiO3
Oβ“˜ AnalcimeNa(AlSi2O6) · H2O
Oβ“˜ MarialiteNa4Al3Si9O24Cl
Oβ“˜ FluorapatiteCa5(PO4)3F
Oβ“˜ RutileTiO2
Oβ“˜ DiopsideCaMgSi2O6
Oβ“˜ Tremolite◻Ca2Mg5(Si8O22)(OH)2
FFluorine
Fβ“˜ Amphibole SupergroupAB2C5((Si,Al,Ti)8O22)(OH,F,Cl,O)2
Fβ“˜ BiotiteK(Fe2+/Mg)2(Al/Fe3+/Mg/Ti)([Si/Al/Fe]2Si2O10)(OH/F)2 or Simplified: K(Mg,Fe)3AlSi3O10(OH)2
Fβ“˜ FluorapatiteCa5(PO4)3F
NaSodium
Naβ“˜ AlbiteNa(AlSi3O8)
Naβ“˜ AnalcimeNa(AlSi2O6) · H2O
Naβ“˜ MarialiteNa4Al3Si9O24Cl
MgMagnesium
Mgβ“˜ Actinolite◻Ca2(Mg4.5-2.5Fe0.5-2.5)Si8O22(OH)2
Mgβ“˜ BiotiteK(Fe2+/Mg)2(Al/Fe3+/Mg/Ti)([Si/Al/Fe]2Si2O10)(OH/F)2 or Simplified: K(Mg,Fe)3AlSi3O10(OH)2
Mgβ“˜ DiopsideCaMgSi2O6
Mgβ“˜ Tremolite◻Ca2Mg5(Si8O22)(OH)2
AlAluminium
Alβ“˜ Epidote(CaCa)(AlAlFe3+)O[Si2O7][SiO4](OH)
Alβ“˜ Amphibole SupergroupAB2C5((Si,Al,Ti)8O22)(OH,F,Cl,O)2
Alβ“˜ AlbiteNa(AlSi3O8)
Alβ“˜ BiotiteK(Fe2+/Mg)2(Al/Fe3+/Mg/Ti)([Si/Al/Fe]2Si2O10)(OH/F)2 or Simplified: K(Mg,Fe)3AlSi3O10(OH)2
Alβ“˜ K FeldsparKAlSi3O8
Alβ“˜ AnalcimeNa(AlSi2O6) · H2O
Alβ“˜ MarialiteNa4Al3Si9O24Cl
SiSilicon
Siβ“˜ Epidote(CaCa)(AlAlFe3+)O[Si2O7][SiO4](OH)
Siβ“˜ Amphibole SupergroupAB2C5((Si,Al,Ti)8O22)(OH,F,Cl,O)2
Siβ“˜ AlbiteNa(AlSi3O8)
Siβ“˜ Actinolite◻Ca2(Mg4.5-2.5Fe0.5-2.5)Si8O22(OH)2
Siβ“˜ QuartzSiO2
Siβ“˜ Ferro-actinolite◻Ca2Fe52+(Si8O22)OH2
Siβ“˜ BiotiteK(Fe2+/Mg)2(Al/Fe3+/Mg/Ti)([Si/Al/Fe]2Si2O10)(OH/F)2 or Simplified: K(Mg,Fe)3AlSi3O10(OH)2
Siβ“˜ TitaniteCaTi(SiO4)O
Siβ“˜ K FeldsparKAlSi3O8
Siβ“˜ AnalcimeNa(AlSi2O6) · H2O
Siβ“˜ MarialiteNa4Al3Si9O24Cl
Siβ“˜ DiopsideCaMgSi2O6
Siβ“˜ Tremolite◻Ca2Mg5(Si8O22)(OH)2
PPhosphorus
Pβ“˜ FluorapatiteCa5(PO4)3F
SSulfur
Sβ“˜ PyriteFeS2
Sβ“˜ ChalcopyriteCuFeS2
Sβ“˜ MarcasiteFeS2
Sβ“˜ GalenaPbS
Sβ“˜ SphaleriteZnS
Sβ“˜ ChalcociteCu2S
Sβ“˜ CovelliteCuS
ClChlorine
Clβ“˜ Amphibole SupergroupAB2C5((Si,Al,Ti)8O22)(OH,F,Cl,O)2
Clβ“˜ MarialiteNa4Al3Si9O24Cl
KPotassium
Kβ“˜ BiotiteK(Fe2+/Mg)2(Al/Fe3+/Mg/Ti)([Si/Al/Fe]2Si2O10)(OH/F)2 or Simplified: K(Mg,Fe)3AlSi3O10(OH)2
Kβ“˜ K FeldsparKAlSi3O8
CaCalcium
Caβ“˜ Epidote(CaCa)(AlAlFe3+)O[Si2O7][SiO4](OH)
Caβ“˜ Actinolite◻Ca2(Mg4.5-2.5Fe0.5-2.5)Si8O22(OH)2
Caβ“˜ CalciteCaCO3
Caβ“˜ Ferro-actinolite◻Ca2Fe52+(Si8O22)OH2
Caβ“˜ TitaniteCaTi(SiO4)O
Caβ“˜ FluorapatiteCa5(PO4)3F
Caβ“˜ DiopsideCaMgSi2O6
Caβ“˜ Tremolite◻Ca2Mg5(Si8O22)(OH)2
TiTitanium
Tiβ“˜ Amphibole SupergroupAB2C5((Si,Al,Ti)8O22)(OH,F,Cl,O)2
Tiβ“˜ BiotiteK(Fe2+/Mg)2(Al/Fe3+/Mg/Ti)([Si/Al/Fe]2Si2O10)(OH/F)2 or Simplified: K(Mg,Fe)3AlSi3O10(OH)2
Tiβ“˜ TitaniteCaTi(SiO4)O
Tiβ“˜ IlmeniteFe2+TiO3
Tiβ“˜ RutileTiO2
FeIron
Feβ“˜ Epidote(CaCa)(AlAlFe3+)O[Si2O7][SiO4](OH)
Feβ“˜ MagnetiteFe2+Fe23+O4
Feβ“˜ PyriteFeS2
Feβ“˜ ChalcopyriteCuFeS2
Feβ“˜ HematiteFe2O3
Feβ“˜ Actinolite◻Ca2(Mg4.5-2.5Fe0.5-2.5)Si8O22(OH)2
Feβ“˜ MarcasiteFeS2
Feβ“˜ Ferro-actinolite◻Ca2Fe52+(Si8O22)OH2
Feβ“˜ BiotiteK(Fe2+/Mg)2(Al/Fe3+/Mg/Ti)([Si/Al/Fe]2Si2O10)(OH/F)2 or Simplified: K(Mg,Fe)3AlSi3O10(OH)2
Feβ“˜ IlmeniteFe2+TiO3
CuCopper
Cuβ“˜ MalachiteCu2(CO3)(OH)2
Cuβ“˜ AzuriteCu3(CO3)2(OH)2
Cuβ“˜ ChalcopyriteCuFeS2
Cuβ“˜ ChalcociteCu2S
Cuβ“˜ CovelliteCuS
ZnZinc
Znβ“˜ SphaleriteZnS
PbLead
Pbβ“˜ GalenaPbS

References

Sort by

Year (asc) Year (desc) Author (A-Z) Author (Z-A)
Sheibi, M. (2014) Mineral chemistry and mass changes of elements during alteration of Panj-Kuh intrusive body (Damghan, Iran). Geopersia, 4, 1, 87-102.
Nabatian, G., Rastad, E., Neubauer, F., Honarmand, M., Ghaderi, M. (2015) Fe and Fe-Mn mineralization in Iran: Implication from Tethyan Metallogeny. Australian Journal of Earth Sciences, 62, 2, 211-241.
Sheibi, M., Mirnejad, H., and Pooralizadeh Moghaddam, M. (2016) Magnetic susceptibility anisotropy as a predictive exploration tool of metasomatic iron oxide deposits: Example from the Panj-Kuh iron ore body, NE Iran. Ore Geology Reviews, 72, 1, 612-628.

Other Regions, Features and Areas containing this locality

AsiaContinent
Eurasian PlateTectonic Plate

This page contains all mineral locality references listed on mindat.org. This does not claim to be a complete list. If you know of more minerals from this site, please register so you can add to our database. This locality information is for reference purposes only. You should never attempt to visit any sites listed in mindat.org without first ensuring that you have the permission of the land and/or mineral rights holders for access and that you are aware of all safety precautions necessary.
 
and/or  
Mindat Discussions Facebook Logo Instagram Logo Discord Logo
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2024, except where stated. Most political location boundaries are Β© OpenStreetMap contributors. Mindat.org relies on the contributions of thousands of members and supporters. Founded in 2000 by Jolyon Ralph.
Privacy Policy - Terms & Conditions - Contact Us / DMCA issues - Report a bug/vulnerability Current server date and time: May 15, 2024 11:45:43 Page updated: February 24, 2023 01:28:59
Go to top of page